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1 Introduction

Recent progress in understanding the AdS4/CFT3 correspondence has been triggered by

the construction of Bagger-Lambert-Gustavsson-type models based on tri-algebras [1, 2, 4]

and by the model due to Aharony, Bergman, Jafferis and Maldacena (ABJM) [5].1 These

new models — based on 3-dimensional N -extended superconformal Chern-Simons gauge

1The ABJM Lagrangian is a special case of the N = 4 superconformal Chern-Simons theories written

down in [6].
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theories coupled to scalar supermultiplets — have been conjectured to provide an effective

low energy description of multiple coincident M2-branes in M-theory, with the ABJM the-

ory at level k describing the physics of multiple M2-branes on an R8/Zk orbifold [5]. These

novel three dimensional theories provide us with new tools for studying the AdS4/CFT3

duality from the boundary field theory point of view, and may shed new light on the

landscape of AdS4 vacua in string theory.

The N = 6 Chern-Simons theory with gauge group U(N)k × U(N)−k constructed

in [5] describes M-theory on AdS4×S7/Zk. There is a region in the parameter space of the

ABJM theory2 where the bulk description is given in terms of perturbative type IIA string

theory on the AdS4 × CP 3 background, which preserves 24 out of 32 supersymmetries.

Therefore, in order to study this new type of holographic correspondence using the bulk

description, one needs an explicit form of the superstring action on the type IIA superspace

whose bosonic body is AdS4 ×CP 3. Likewise, writing down the action of D-branes on the

AdS4 × CP 3 superbackground is useful, as D-branes in AdS4 × CP 3 play an important

role in the duality, since they describe various local and non-local operators in the dual

gauge theory [5, 7–11]. Of course, the Green-Schwarz-type form of the superstring action

and superbrane actions in generic superbackgrounds are well known [12–19]. The challenge

is to obtain the explicit form of the superstring and superbrane actions3 for the various

AdS4/CFT3 superbackgrounds, by finding the explicit dependence of the supervielbeins,

NS-NS and RR superfields on the 32 fermionic coordinates of the type IIA superbackground

of interest.

Analogous demand for explicit actions for the superstring and branes arose in the early

studies of the AdS5/CFT4 and AdS4/CFT3 correspondence. In the maximally supersym-

metric AdS5×S5 superbackground, the supergeometry is described by the coset superspace

SU(2, 2|4)/SO(5) × SO(1, 4), and the explicit form of the action for the type IIB super-

string was found in [21, 22] while the D3-brane action was constructed in [23]. Analogous

actions were derived for the M2-brane [24] and the M5-brane [25, 26] in the AdS4 × S7

and AdS7 × S4 superbackgrounds respectively, which are described by the supercosets

OSp(8|4)/SO(7) × SO(1, 3) and OSp(6, 2|4)/SO(4) × SO(1, 6).

The construction of the superstring and brane actions in the AdS4 ×CP 3 background

is significantly more complicated, as the background preserves only 24 out of the 32 su-

persymmetries of type IIA supergravity. A coset superspace whose isometries are those

of the AdS4 × CP 3 vacuum is OSp(6|4)/U(3) × SO(1, 3). Its bosonic body is the desired

AdS4 × CP 3 geometry and its Grassmann-odd subspace is 24-dimensional. Therefore,

OSp(6|4)/U(3) × SO(1, 3) is a particular solution of the type IIA supergravity constraints

which can be regarded as a submanifold in the general AdS4 ×CP 3 IIA superspace, whose

Grassmann-odd sector is 32-dimensional.

A sigma-model action for the superstring propagating in the OSp(6|4)/U(3)×SO(1, 3)

submanifold of the complete type IIA superspace was constructed and analyzed in [27–31].

This action can be regarded as the Green-Schwarz action for the superstring in an AdS4 ×
2Corresponding to N2 ≫ λ5/2, where λ is the ’t Hooft coupling of the ABJM theory.
3The superstring action to quadratic order in the fermionic coordinates is known in an arbitrary super-

background [20].
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CP 3 superspace with 32 fermionic directions in which the 16-parameter kappa-symmetry

has been partially fixed in order to eliminate the 8 fermionic coordinates of the string

corresponding to the 8 broken supersymmetries. With this interpretation, only 24 fermionic

modes on the string worldsheet remain and these are described by the sigma-model based

on the OSp(6|4)/U(3) × SO(1, 3) supercoset. This fixing of kappa-symmetry restricts the

motion of the string to a submanifold of bosonic dimension 10 and fermionic dimension 24

in the total type IIA superspace. As already noted in [27], the OSp(6|4)/U(3) × SO(1, 3)

sigma-model action does not describe all possible motions of the string in the AdS4 ×CP 3

superspace. In particular, if the string moves entirely in AdS4, the number of kappa-

symmetries of this sigma-model gets increased from 8 to 12. This indicates that this

dynamical sector of the theory cannot be attained from the gauge choice for fixing kappa-

symmetry of the Green-Schwarz string action that yields the coset superspace. In this

sector of the theory, four of the modes associated with the eight broken supersymmetries

are dynamical fermionic degrees of freedom of the superstring. The reason behind this

is that when the string moves entirely in AdS4, its kappa-symmetry projector commutes

with the projector which singles out the 8 broken supersymmetries, and therefore it cannot

eliminate all the corresponding fermionic modes but only half of them.

Therefore, the study of the general classical and quantum motion of the superstring in

AdS4×CP 3 cannot be achieved using the OSp(6|4)/U(3)×SO(1, 3) supercoset. We need to

find an action that includes the extra dynamical fermionic modes. On general grounds, this

is given by the Green-Schwarz superstring action in the AdS4 × CP 3 superspace with 32

Grassmann-odd coordinates coupled to a corresponding NS-NS 2-form superfield depending

on 32 θs. In this paper we present this action.

Likewise, a D2-brane which is embedded purely in an AdS4 subspace4 of AdS4 ×
CP 3 cannot be described by the D2-brane action based on the OSp(6|4)/U(3) × SO(1, 3)

supercoset, since the embedding is incompatible with the kappa-symmetry gauge fixing5

of the corresponding Green-Schwarz-type D2-brane action [15–17]. Other examples of this

situation are D2- and D4-branes partially moving in AdS4 and wrapping the 2-cycle in CP 3

associated with the CP 3 Kähler form J . Thus, to describe a general D-brane configuration

in AdS4 × CP 3 one needs once again an explicit form of its action in the AdS4 × CP 3

superspace with 32 Grassmann-odd coordinates coupled to the corresponding NS-NS and

RR superfields depending on 32 θs.

The main result of this paper is the explicit construction of the complete AdS4 ×CP 3

superspace including all of the 32 Grassmann-odd coordinates. Unlike for most of the

supergeometries studied previously in the literature, this type IIA AdS4×CP 3 superspace is

not a coset superspace, but we can nevertheless completely characterize its supergeometry.

Having determined the supervielbeins of this superspace and the corresponding NS-NS and

RR gauge superfields, we explicitly write down the general Green-Schwarz-type actions for

4An example of this situation is the D2-brane with AdS2×S1 ⊂ AdS4 worldvolume [8], which corresponds

to a disorder loop operator in the ABJM theory, and another example is the D2-brane at the Minkowski

boundary of AdS4.
5The discussion of the problem of fixing κ-symmetry in the D0– and D2-brane actions in AdS4 × CP 3

superspaces has been done in collaboration with P. Fré and P.A. Grassi.

– 3 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
5

the type IIA superstring and D-branes in AdS4 ×CP 3. We analyze the classical equations

of motion of the superstring in different submanifolds of the AdS4 × CP 3 superspace. On

the submanifold described by the OSp(6|4)/U(3) × SO(1, 3) coset superspace, the classical

superstring equations of motion are integrable [27, 28], generalizing the corresponding result

found by Bena, Polchinski and Roiban for the type IIB superstring propagating on the

AdS5×S5 supercoset [32]. However, we find that there is a submanifold in the AdS4×CP 3

superspace that is described by a “twisted” OSp(2|4)/SO(2)×SO(1, 3) superspace, which is

not a supercoset, and the ingredients used to prove integrability found in [32] do not directly

apply to this sector of the theory. Therefore, it remains an important open problem to

determine whether the complete set of classical equations of motion of the Green-Schwarz

superstring propagating on the AdS4 × CP 3 superspace is classically integrable. The fact

that the AdS4 × CP 3 superspace with 32 fermionic directions is not a supercoset requires

more general techniques to prove classical integrability.

The explicit form of the supervielbeins and superconnections describing the AdS4 ×
CP 3 superspace are obtained by performing the Kaluza-Klein reduction of the supergeome-

try of the supercoset OSp(8|4)/SO(7)×SO(1, 3), which is a solution of the D=11 superfield

supergravity constraints corresponding to the maximally supersymmetric AdS4 × S7 vac-

uum of eleven dimensional supergravity. It is well known since the first intensive studies of

flux compactifications of D=10 and D=11 supergravities that type IIA supergravity vacua6

can be lifted to corresponding bosonic solutions of D=11 supergravity by constructing U(1)

fibrations over the ten dimensional manifold characterizing the type IIA supergravity solu-

tions [39–41]. For example, the 7-sphere is a U(1) Hopf fibration over CP 3, and therefore

the AdS4 ×CP 3 solution of the bosonic equations of type IIA supergravity [36] is directly

related to the Freund-Rubin AdS4 × S7 solution of the bosonic D = 11 supergravity equa-

tions of motion by reducing along the U(1)-fiber direction of the S7 [40, 41]. For recent

generalizations of these old results to the description of new compactified type IIA vacua

see e.g. [42–45].

Extending the Kaluza-Klein reduction to superspace is much more subtle. When the

Hopf fibration of AdS4 × S7 is lifted to D = 11 superspace, such that AdS4 × S7 becomes

the bosonic subspace of the OSp(8|4)/SO(7) × SO(1, 3) supercoset, the supervielbeins of

the supercoset do not come in a form suitable for performing the dimensional reduction

of the D=11 superspace down to the type IIA D=10 superspace (see [46] for the general

prescription for performing such a superspace reduction and [47] for more details). As we

6Let us here make the historical remark that the compactified vacuum solutions of type IIA super-

gravity corresponding to a direct product of AdS4 and a compact manifold M6 [33–36] were obtained by

a combination of two mechanisms of spontaneous (flux) compactification proposed in 1980. One of the

mechanisms was due to Freund and Rubin [37] in which the compactification of a D-dimensional theory

into an AdSn ×MD−n manifold takes place as a result of the interaction of gravity with a closed n-form or

(D − n)-form field strength of an antisymmetric gauge field. Another mechanism was proposed by Volkov

and Tkach [38]. Volkov and Tkach showed that in an interacting theory of gravity with Yang-Mills fields the

compactification of extra dimensions may take place into coset spaces when components of the Yang-Mills

fields take the same values as some components of the spin connection of the compactified manifold. The

field strengths of the vacuum configurations of the Yang-Mills fields are (using the modern terminology)

topologically nontrivial fluxes supported by compact subspaces.

– 4 –
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shall show, to get the OSp(8|4)/SO(7) × SO(1, 3) supervielbeins in the Kaluza-Klein-like

form one should perform a “twist” of their components along the AdS4 and the U(1)-

fiber directions, or in other words perform a local Lorentz rotation in the 5-dimensional

subspace tangent to AdS4 and the U(1)-fiber direction along S7. We should stress that

such a transformation is not part of the isometry of the AdS4 × S7 solution and should be

regarded as an appropriate choice of a different supervielbein basis of OSp(8|4)/SO(7) ×
SO(1, 3) which has the Kaluza-Klein form compatible with the Hopf fibration. Note that

by orbifolding the OSp(8|4)/SO(7) × SO(1, 3) supercoset by Zk ⊂ U(1), where U(1) is the

commutant of SU(4) in SO(8), one gets the supergeometry corresponding to the superspace

with an AdS4 ×S7/Zk bosonic subspace, a background of eleven dimensional supergravity

which preserves 24 supersymmetries (for k > 2) and is the near horizon geometry of N

M2-branes probing the C4/Zk singularity.

Having obtained the complete supergeometry with 32 fermionic directions describing

the AdS4 × CP 3 solution of type IIA supergravity, one can then use it to write down the

Green-Schwarz-type actions for the type IIA superstring and D-branes (or the pure spinor

action for the superstring) depending on all 32 fermions. This gives the complete and

consistent description of these objects in the type IIA AdS4 ×CP 3 superbackground. The

complete form of the Green-Schwarz action provides a systematic framework in which to

study the AdS4/CFT3 correspondence and other problems.

The plan of the rest of the paper is as follows. In section 2, for the reader’s con-

venience, we summarize our results and write down the explicit supergeometry for the

type IIA AdS4 × CP 3 background. The details of our computations appear in the rest

of the paper. In section 3 we write down the actions for the superstring and D-branes in

this superbackground. We also analyze the motion of the string in submanifolds of the

AdS4 ×CP 3 superspace and note that the string equations of motion in a certain subspace

are integrable [27, 28]. We find, however, that there is a submanifold in superspace for

which the criteria found to prove integrability in [32] are not satisfied. So whether the

Green-Schwarz superstring in AdS4 ×CP 3 is integrable remains to be proven. In section 4

we describe a coset space realization of S7 as a U(1) bundle over CP 3. In section 5 we

lift the Hopf fibration description of the S7 to D = 11 superspace and show that the

associated supervielbeins and superconnections can be brought to the Kaluza-Klein form

by performing a particular local Lorentz transformation, which allows us to read off the

supergeometry for the type IIA AdS4 ×CP 3 background. The main notation, conventions

and some computations are presented in the appendices A–C.

2 AdS4 × CP 3 superspace with 32 Grassmann-odd directions

In this section we summarize our main result, namely, the construction of the superspace

which has 32 Grassmann-odd directions, contains AdS4 × CP 3 as its bosonic part and

solves the type IIA supergravity constraints [15, 17, 47, 48]. The derivation of this result

is given in sections 4–5.

The type IIA superspace of interest is parametrized by 10 bosonic coordinates XM =

(xm, ym′
), where xm (m = 0, 1, 2, 3) and ym′

(m′ = 1, . . . 6) parametrize AdS4 and CP 3

– 5 –
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respectively, and by 32-fermionic coordinates θµ = (θµµ′
), which combine into the superco-

ordinates ZM = (xm, ym′
, θµµ′

). The spinor indices µ = 1, 2, 3, 4, and µ′ = 1, . . . , 8 label,

respectively, an SO(2, 3) and SO(6) spinor representation.

The 32 fermionic coordinates θµµ′
split into 24 coordinates ϑµm′

, which correspond to

the 24 unbroken supersymmetries of the AdS4 × CP 3 background, and 8 coordinates υµi

(i = 1, 2) corresponding to the 8 broken supersymmetries.7

The type IIA supervielbeins are8

EA = dZM EMA(Z) = (EA, Eα) , (2.1)

where

EA(Z) = (Ea, Ea′
) a = 0, 1, 2, 3, a′ = 1, . . . , 6 (2.2)

are the vector supervielbeins in the tangent space of AdS4 × CP 3 and

Eα(Z) = Eαα′
= (Eαa′

, Eαi) α = 1, 2, 3, 4, α′ = 1, . . . , 8 , i = 1, 2 (2.3)

are the fermionic supervielbeins which split into 24 along the unbroken supersymmetry

directions and eight along the broken ones. (The spinor indices α = 1, 2, 3, 4, and α′ =

1, . . . , 8 label, respectively, an SO(1, 3) and a U(3) representation.) The supervielbeins (2.2)

and (2.3) are expressed in terms of the supervielbeins EA(x, y, ϑ), Eαa′
(x, y, ϑ) and the

U(1) connection A(x, y, ϑ) of the OSp(6|4)/U(3) × SO(1, 3) supercoset, whose fermionic

coordinates are ϑαa′
, but the former also depend on the 8 additional fermionic coordinates

υαi as follows9

Ea′
(x, y, ϑ, υ) = e

1
3
φ(υ)

(

Ea′
(x, y, ϑ) − 2υ

sinhm

m
γa′

γ5 E(x, y, ϑ)

)

,

Ea(x, y, ϑ, υ) = e
1
3
φ(υ)

(

Eb(x, y, ϑ) − 4υγb sinh2 M/2

M2
Dυ

)

Λb
a(υ)

− e−
1
3
φ(υ)

(

A(x, y, ϑ) − 4iυ εγ5 sinh2 M/2

M2
Dυ

)

E7
a(υ) , (2.4)

Eαi(x, y, ϑ, υ) = e
1
6
φ(υ)

(

sinhM
M Dυ

)βj

Sβj
αi (υ) − i eφ(υ)A1(x, y, ϑ, υ) (γ5ελ(υ))αi ,

Eαa′
(x, y, ϑ, υ) = e

1
6
φ(υ) Eγb′(x, y, ϑ)

(

δγ
β − 8

(

iγ5 υ
sinh2 m/2

m2

)

γi

υβi

)

Sβb′
αa′

(υ) ,

where E(x, y, ϑ) in the second term of the first expression is the spinor one-form Eγb′(x, y, ϑ)

which also appears in the last expression of (2.4).

7This splitting is carried out by applying the projectors (5.1) and (5.4) on θµ (See appendices A and C

for more details).
8Our convention for the essential torsion constraint of IIA supergravity is Tαβ

A = 2ΓA
αβ . This choice is re-

lated to the form of the OSp(8|4) algebra (appendix B, eq. (B.7)) and differs from that of [47] by the factor 2i.
9These are the formulas for the case when k, corresponding to the order of the Zk orbifold of the S7 and

the type IIA RR two-form flux through CP 3, is set to k = 1. The formulas for general k are obtained by

making the following rescaling: Φ → 1
k
Φ, E a

7 → 1
k
E a

7 and e
2

3
φ → 1

k
e

2

3
φ.

– 6 –
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The type IIA RR one-form gauge superfield is

A1(x, y, ϑ, υ) = e−
4
3
φ(υ)

[(

A(x, y, ϑ) − 4iυ εγ5 sinh2 M/2

M2
Dυ

)

Φ(υ)

+

(

Ea(x, y, ϑ) − 4υγa sinh2 M/2

M2
Dυ

)

E7a(υ)

]
(2.5)

with the field strength F2 = dA1. The RR four-form and NS-NS three-form superfield

strengths are given by

F4 = dA3 −A1 H3 = − 1

4!
EdEcEbEa

(

6e−2φΦεabcd

)

+
1

2
EBEAEβEαe−φ(ΓAB)αβ (2.6)

H3 = dB2 = − 1

3!
EcEbEa

(

6e−φεabcdE7
d
)

+ EAEβEα (ΓAΓ11)αβ − EBEAEα(ΓABΓ11λ)α ,

where ΓA and Γ11 are 32 × 32 gamma-matrices which in the AdS4 × CP 3 background are

convenient to represent as a direct product of 4×4 and 8×8 gamma-matrices (see eq. (A.8)

of appendix A).

The gauge potentials of (2.6), which appear in the superstring and D-brane actions,

can be computed by a standard procedure as follows:

B2 = b2 +

∫ 1

0
dt iθH3(x, y, tθ) , θ = (ϑ, υ) (2.7)

A3 = a3 +

∫ 1

0
dt iθ (F4 + A1H3) (x, y, tθ) , (2.8)

where b2 and a3 are the purely bosonic parts of the gauge potentials and iθ means the inner

product with respect to θµµ′
. Note that b2 is pure gauge in the AdS4 × CP 3 solution.10

In eqs. (2.4)–(2.5)

Dυ =

(

d + iEa(x, y, ϑ)γ5γa −
1

4
Ωab(x, y, ϑ)γab

)

υ , (2.9)

where Ea′
(x, y, ϑ), Ea(x, y, ϑ) and Ωab(x, y, ϑ) are, respectively, the CP 3 and AdS4 part of

the supervielbein and the SO(1, 3) connection of the OSp(6|4)/U(3)× SO(1, 3) supercoset,

while Eαa′
(x, y, ϑ) is its spinorial supervielbein. A(x, y, ϑ) is the U(1) connection on the

OSp(6|4)/U(3)× SO(1, 3) supercoset, which corresponds to the RR one-form gauge poten-

tial for this type IIA supergravity solution, while in the complete superspace it is given

by (2.5). All these quantities are known explicitly and can be taken in any suitable form,

which one can find, e.g. in [22, 27–29, 31] or in our appendix A, eq. (A.10). An appropriate

choice of the supercoset representatives may drastically simplify their fermionic dependence

(see e.g. [26]).

10To derive eqs. (2.7) and (2.8) one should use the fact that the coordinate variation of a differential

superform A(Z) = A(X, θ) is δA = iδZdA + d(iδZA). Then, rescaling θ → tθ in A(X,θ) and taking the

derivative with respect to t, we have d
dt

A(X, tθ) = iθdA + d(iθA), which upon integration over t gives

eqs. (2.7) and (2.8), up to pure gauge terms.

– 7 –
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The quantities Λa
b(υ) and Sαα′

ββ′
(υ) appearing in the above equations have the form

Λa
b = δa

b − e−
2
3
φ

e
2
3
φ + Φ

E7a E7
b

S =
e−

1
3
φ

√
2





√

e
2
3
φ + Φ − E7

a ΓaΓ11
√

e
2
3
φ + Φ



 .

(2.10)

They generate the Lorentz transformation in the OSp(8|4)/SO(7)×SO(1, 3) supergeometry

which brings the D = 11 superspace into the Kaluza-Klein form required to perform its

dimensional reduction to the D = 10 superspace (see section 5).

The function φ(υ) is the dilaton superfield of the full type IIA superspace solution

under consideration. The dilaton superfield depends only on the 8 Grassmann coordinates

υαi and has the following expression in terms of E7
a(υ) and Φ(υ)

e
2
3
φ(υ) =

√

Φ2 + E7
a E7

b ηab . (2.11)

The fermionic field λαi(υ) describes the non-zero components of the dilatino superfield,

which is defined by the equation [47]

λαi = −1

3
Dαi φ(υ). (2.12)

Other quantities appearing in eqs. (2.4)–(2.12), namely M, m, Φ(υ) and E7
a(υ), whose

geometrical and group-theoretical meaning is explained in section 5, are explicitly given in

eqs. (5.30), (5.31).

One can notice that a distinctive feature of the AdS4 × CP 3 IIA superspace with

32 Grassmann-odd directions compared to the coset superspace OSp(6|4)/U(3) × SO(1, 3)

with only 24 Grassmann-odd directions is that in the full superspace solution the dila-

ton, dilatino and the NS-NS 3-form superfield have non-zero values, and depend on the 8

fermionic coordinates which correspond to broken supersymmetries of the AdS4×CP 3 IIA

supergravity solution.

For brevity we do not present here the explicit form of the superconnections of the

AdS4×CP 3 superspace, since they are not required for the construction of the superstring

and brane actions. When necessary, they can be directly recovered from the Cartan forms

of OSp(8|4)/SO(7) × SO(1, 3), as explained in section 5.

3 Actions for the type IIA superstring and D-branes in the complete

AdS4 × CP 3 superspace

3.1 Type IIA Green-Schwarz superstring

The Green-Schwarz superstring action [12] in a generic supergravity background is well-

known [13] and its Nambu-Goto form is

S = −T

∫

d2ξ
√

− det (Ei
A Ej

B ηAB) + T

∫

B2(ξ), (3.1)
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where T is the string tension, ξi (i = 0, 1)11 are the string worldsheet coordinates, Ei
A =

∂i ZM(ξ) EMA is the worldsheet pullback of the vector supervielbeins of type IIA super-

gravity and B2(ξ) = 1
2dξi dξj ∂i Z

N∂j ZM BMN (Z) is the worldsheet pullback of the NS-NS

two-form superfield.

Provided that the superbackground satisfies the IIA supergravity constraints, the ac-

tion (3.1) is invariant under kappa-symmetry transformations of the superstring coordinates

ZM(ξ) which for all known superbranes have the following generic form

δκZM EMα =
1

2
(1 + Γ̄)

α
β κβ(ξ), α = 1, . . . , 32 (3.2)

δκZM EMA = 0, A = 0, 1, . . . , 9 (3.3)

where κα(ξ) is a 32-component spinor parameter and 1
2(1 + Γ̄)

α
β is a spinor projection

matrix (such that Γ̄2 = 1) specific to each type of superbrane.

In the case of the type IIA superstring the matrix Γ̄ is

Γ̄ =
1

2
√

− det gij

ǫij Ei
A Ej

B ΓAB Γ11, (3.4)

where

gij(ξ) = Ei
A Ej

B ηAB (3.5)

is the induced metric on the worldsheet of the string.

To describe the type IIA superstring in the complete AdS4×CP 3 superspace we should

just substitute into the above equations the explicit form of the vector supervielbeins EA

and the NS-NS two-form B2 given in eqs. (2.4) and (2.7).

Note that kappa-symmetry allows one to eliminate 16 out of 32 fermionic degrees

of freedom of the superstring. It can be used to simplify and reduce the form of the

supervielbein pullbacks and, as a consequence, the form of the string action. For example,

one might be willing, by using kappa-symmetry, to get rid of the 8 fermionic coordinates υαi

corresponding to the 8 broken supersymmetries of AdS4×CP 3. As a result of such a partial

gauge fixing, one arrives at the superstring action of [27, 28, 31], which can be described by

a sigma-model on the OSp(6|4)/U(3)×SO(1, 3) supercoset. However, the kappa-symmetry

gauge fixing which completely eliminates υαi is only possible when the kappa-symmetry

projector (3.2), (3.4) does not commute with the projector P2, eq. (5.4), which singles

out 8 out of 32 fermionic coordinates. This is not the case, for example, when the string

moves entirely in the AdS4 space. In this case [Γ̄, P2] = 0, and kappa-symmetry can only

eliminate half of the eight υαi’s. Hence, such configurations of the string in AdS4 × CP 3

cannot be described by the sigma-model action based on the OSp(6|4)/U(3) × SO(1, 3)

supercoset and one should use the action (3.1) in the full superspace.

11Since we have exhausted a finite number of letters which are at our disposal to define different types of

indices, here we use the letters i, j to denote the worldvolume indices. We believe that this will not cause

confusion with the same letters used in the previous section to define SO(2) ⊂ SO(8) indices.
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3.1.1 Classical integrability of Green-Schwarz action in AdS4×CP 3 superspace

f The explicit form of the Green-Schwarz action in AdS4 ×CP 3 allows for the study of the

most general solution to the string equations of motion in this background. Furthermore,

having the complete action in superspace provides us with a systematic framework in which

to compute quantum corrections to any classical string solution. Classical string solutions

together with their quantum corrections play an important role in the AdS/CFT correspon-

dence, as they correspond to certain “long” operators in the gauge theory (see e.g. [49, 50]).

In [32] it has been shown that the Green-Schwarz action in AdS5×S5 [21] is classically

integrable.12 This can be proven by explicitly constructing a Lax connection representation

of the superstring equations of motion, such that flatness of the Lax connection Li

∂iLj − ∂jLi − [Li,Lj ] = 0 (3.6)

implies the superstring equations of motion. The crucial ingredients in the construc-

tion of the Lax connection are the Cartan forms in the AdS5 × S5 coset superspace

SU(2, 2|4)/SO(1, 4) × SO(5) and the existence of a Z4 automorphism of the SU(2, 2|4)
algebra. One can then construct the conserved charges of the integrable model from the

holonomy of the Lax connection (see [32] for more details).

The construction in [32] guarantees that any sigma-model based on a supercoset G/H

is classically integrable as long as the superalgebra G admits a Z4 grading. This general

construction provides a simple diagnostic for determining whether a large class of supercoset

models are classically integrable. In this paper, however, we have shown that the complete

AdS4 × CP 3 Type IIA superspace is not given by a coset superspace. This implies that

the technique introduced in [32] does not directly apply, as we cannot longer construct a

candidate Lax connection Li from the Cartan forms of the supercoset. Nevertheless, we can

study the various allowed motions of the superstring along submanifolds of the complete

AdS4 ×CP 3 Type IIA superspace and analyze whether the equations of motion governing

the allowed motions are classically integrable.

Wherever it is allowed, by partially fixing kappa-symmetry, we can set to zero the 8

fermionic coordinates vαi which correspond to the 8 supersymmetries broken by the AdS4×
CP 3 background. This choice selects the submanifold M10,24 in the complete AdS4 ×CP 3

superspace. In this submanifold, the superstring can move in the full AdS4 ×CP 3 bosonic

subspace (the string must propagate, however, both in AdS4 and in CP 3 in order to be

compatible with the gauge fixing [27]) but the motion of the string is restricted to a 24

dimensional fermionic submanifold of the superspace spanned by the coordinates ϑαa′
. For

these classical configurations, the complete AdS4 × CP 3 superspace found in this paper

reduces to the OSp(6|4)/U(3)×SO(1, 3) coset superspace already considered in [27–29, 31].

For this family of classical solutions the Green-Schwarz action can be completely written

down in terms of the Cartan forms of the OSp(6|4)/U(3)× SO(1, 3) supercoset, very much

like for the type IIB superstring action on the AdS5×S5 coset superspace. Moreover, since

the OSp(6|4) algebra admits a Z4 automorphism, the construction in [32] can be carried

12See [51] for earlier work considering the classical integrability of the bosonic sigma-model.
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over to this case to show that the classical equations of motion of the superstring in the

subspace M10,24 of the complete AdS4 × CP 3 superspace is integrable [27, 28].13

The gauge fixed action with vαi = 0 is, however, incompatible with motions of the

string e.g. purely in the AdS4 geometry, which constitute an important family of classi-

cal solutions (see e.g. [49]). One can study these motions of the string by considering a

submanifold M4,8 of the complete AdS4 × CP 3 superspace. This submanifold is spanned

by the AdS4 bosonic geometry and by the 8 dimensional fermionic space parametrized

by the coordinates vαi.14 It follows from our expressions for the AdS4 × CP 3 super-

space, that the submanifold M4,8 can be associated with a “twisted coset” superspace

OSp(2|4)/SO(2) × SO(1, 3), where the Cartan forms are rotated by a local Lorentz trans-

formation in D = 11 superspace, which was required to perform the Kaluza-Klein reduction

to the AdS4 × CP 3 superspace. The twisting reflects the fact that the fermionic coordi-

nates of this superspace correspond to 8 broken supersymmetries. Thus this superspace

does not have superisometries. The supervielbeins and the Abelian one-form superfield in

this “twisted coset” superspace have the following form (see eqs. (2.4) and (2.5))

Ea(x, υ) = e
1
3
φ(υ)

(

eb(x) − 4υγb sinh2 M/2

M2
Dυ

)

Λb
a(υ)

+4i e−
1
3
φ(υ) υ εγ5 sinh2 M/2

M2
Dυ E7

a(υ) ,

Eαi(x, υ) = e
1
6
φ(υ)

(

sinhM
M Dυ

)βj

Sβj
αi (υ) − eφ(υ)A1(x, υ) (iγ5ελ(υ))αi , (3.7)

A1(x, υ) = e−
4
3
φ(υ)

[(

ea(x) − 4υγa sinh2 M/2

M2
Dυ

)

E7a − 4iυ εγ5 sinh2 M/2

M2
Dυ Φ(υ)

]

,

where

Dυ =

(

d + iea(x)γ5γa −
1

4
ωab(x)γab

)

υ , (3.8)

and ea(x) and ωab(x) are the AdS4 vielbeins and connection respectively. The RR and

NS-NS superfields in this four-dimensional supermanifold have the same form as in (2.6)

but with the D=10 supervielbeins replaced with eqs. (3.7).

For comparison, let us present the supervielbeins for the conventional supercoset

OSp(2|4)/SO(2) × SO(1, 3)

Ea(x, υ) = ea(x) − 4υγa sinh2 M/2

M2
Dυ ,

Eαi(x, υ) =

(

sinhM
M Dυ

)αi

,

A1(x, υ) = −4iυ εγ5 sinh2 M/2

M2
Dυ .

(3.9)

13In [52] the algebraic curve characterizing the classical solutions on this supercoset has been proposed.
14In this subspace the string worldsheet scalars ym′

are constant and ϑαa′

are covariantly constant

(Killing) spinors, Dϑ = 0 (on the worldsheet).
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Since the “twisted” OSp(2|4)/SO(2) × SO(1, 3)” supermanifold is not a coset super-

space, the criteria used in [32] to prove integrability of the classical equations of motion do

not directly apply to this superspace. Therefore, it remains an important open problem to

determine whether our explicit form of the Green-Schwarz action when restricted to M4,8

is classically integrable. The explicit expressions for the AdS4 ×CP 3 supergeometry found

in this paper provides a framework in which this question can be investigated.

Understanding the classical and quantum integrability of the superstring equations

of motion in the AdS4 × CP 3 superspace also provides an important clue in determining

whether the planar dilatation operator of the holographic dual ABJM N = 6 Chern-

Simons theory is integrable to all orders in the ’t Hooft coupling. Integrability of the

two-loop ABJM dilatation operator has been exhibited in [54, 55, 57] and a conjecture

for the all loop Bethe ansatz has been made in [58]. However, unlike for the maximally

supersymmetric AdS5/CFT4 duality, the magnon dispersion relation acquires non-trivial

quantum corrections both at strong coupling as well as in the weak coupling regime [9, 10,

55, 56, 58, 59], significantly complicating the AdS4/CFT3 analysis with respect to the case

of the AdS5/CFT4 duality. More work is needed to convincingly argue that the ABJM

planar dilatation operator is exactly integrable. Determining whether the ABJM theory is

exactly integrable in the planar limit and whether the Green-Schwarz superstring in the

AdS4×CP 3 superspace is integrable remain two important problems to resolve in this new

holographic correspondence.

3.2 Type IIA D-branes

The action for a Dp-brane (p = 0, 2, 4, 6, 8) in a general type IIA supergravity back-

ground [15–17] in the string frame has the form

S = −Tp

∫

dp+1ξ e−φ
√

− det(gij + Fij) + Tp

∫

eF2 ∧ A|p+1 , (3.10)

where Tp is the tension of the Dp-brane,

gij(ξ) = Ei
A Ej

B ηAB i, j = 0, . . . , p (3.11)

is the induced metric on the Dp-brane worldvolume and

F2 = dV − B2 (3.12)

is the field strength of the worldvolume Born-Infeld gauge field Vi(ξ) extended by the

pullback of the NS-NS two-form. In the second term of eq. (3.10), the Wess-Zumino term,

|p+1 means that we must pick only the terms which are (p + 1)-forms in the D-brane

worldvolume from the formal sum of the forms of different degrees

eF2 = 1 + F2 +
1

2
F2F2 +

1

3!
F2F2F2 +

1

4!
F2F2F2F2 +

1

5!
F2F2F2F2F2 =

5
∑

k=0

1

n!
(F2)

n ,

A = A1 + A3 + A5 + A7 + A9 =

4
∑

n=0

A2n+1 , (3.13)
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where An are the type IIA supergravity RR superforms and their Hodge duals.

The action (3.10) is invariant under the kappa-symmetry transformations (3.2)–(3.3)

provided that the superbackground satisfies the type IIA supergravity constraints and the

Born-Infeld field transforms as follows

δκ V = iδκ B2 ⇒ δκ F2 = −iδκH3 . (3.14)

The explicit form of the kappa-symmetry projection matrix Γ is given in [15–17].

To describe the Dp-branes in the AdS4 ×CP 3 superbackground one should substitute

into the above expressions the explicit form of the supervielbeins, NS-NS and RR forms

given in (2.4), (2.7), (2.5) and (2.8). As in the superstring case, one can verify that for

the D0-brane and a D2-brane moving entirely in the AdS4 space, the corresponding kappa-

symmetry projector commutes with the projector P2 (5.4) which singles out the 8 fermionic

coordinates υαi in superspace. For these configurations, kappa-symmetry cannot eliminate

all eight υαi’s, but only half of them, just like for the case of the superstring moving

entirely in AdS4. Therefore, such configurations of D0 and D2-branes cannot be described

by sigma-models based on the supercoset OSp(6|4)/U(3) × SO(1, 3), and one should use

the complete IIA superspace constructed in this paper.5 In particular, one should use

this complete superspace for studying the AdS4/CFT3 correspondence for the D2-branes

placed at the boundary of AdS4 as well as for the D2-branes corresponding to vortex loop

operators in the boundary field theory [8].

Other examples of brane configurations for which kappa-symmetry cannot completely

remove the 8 ‘broken’ fermionic coordinates are D2– and a D4-branes wrapping the 2-cycle

of CP 3 associated with the CP 3 Kähler form J and moving in AdS4.

In the next sections we shall explain in detail the construction of the complete type

IIA AdS4 × CP 3 superspace which we summarized in section 2.

4 Coset space realization of S7 as a fibration over CP 3

We construct the complete D = 10 AdS4×CP 3 superspace by dimensional reduction of the

D = 11 supercoset OSp(8|4)/SO(7) × SO(1, 3) whose supervielbeins and superconnection

have a fiber bundle form, generalizing to superspace the Hopf fibration form of the metric

and connection of the 7-sphere. So let us start by reviewing the Hopf fiber bundle structure

of the 7-sphere by considering it as a coset space.

S7 can be realized as the symmetric space SO(8)/SO(7), however this realization does

not provide us directly with the desired Hopf fibration form of its vielbein and connection.

The coset realization of S7 exhibiting its structure as a Hopf fibration over CP 3 is the coset

space SU(4)×U(1)
SU(3)×U ′(1) . Note that this is not a symmetric space.15 On the other hand, CP 3 is

a symmetric space realized as the coset SU(4)
SU(3)×U(1) . The isometry group SU(4) × U(1) ≃

SO(6)×SO(2) of the coset SU(4)×U(1)
SU(3)×U ′(1) should be considered as a subgroup of SO(8), SU(3)

is a subgroup of SU(4) and U ′(1), in the denominator, is generated as follows. Let T2 be

the generator of U(1) ≃ SO(2) in the numerator of the coset SU(4)×U(1)
SU(3)×U ′(1) and let T1 be the

15A nice concise review of geometry of coset spaces the reader may find e.g. in [60].

– 13 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
5

U(1) subgroup of SU(4) which commutes with SU(3). Then the stability subgroup U ′(1)

is generated by

T ′ =
3

4
(T2 − T1) (4.1)

and the generator

P7 =
1

4
(3T1 + T2) (4.2)

corresponds to the 7th (U(1)-fiber) direction of S7. The inverse expressions are

T1 = P7 −
1

3
T ′, T2 = P7 + T ′ . (4.3)

In terms of generators of the SO(8) algebra (See appendices), the above generators are

T ′ = −1

2
Ja′b′ Ma′b′ , P7 = −M78 (4.4)

where Ma′b′ are the SO(6) generators and Ja′b′ are the components of the Kähler form on

CP 3 satisfying the relations

Ja′b′ = −Jb′a′ , Ja′c′ J
c′

b′ = −δa′b′ , ǫa′b′c′d′e′f ′ Ja′b′ Jc′d′ = 8Je′f ′ . (4.5)

To get the ‘fiber bundle form’ of the vielbein and connection of the 7-sphere we choose

the following coset representative of SU(4)×U(1)
SU(3)×U ′(1)

K = e ym′
Pm′ e zT2 = e ym′

Pm′ e zP7 e zT ′
, (4.6)

where Pm′ are the generators corresponding to the coset CP 3 = SU(4)
SU(3)×U(1) parametrized

by coordinates yn′
(n′ = 1, . . . , 6) and z is the U(1) fiber coordinate of S7 (associated

with the generator P7) so that (yn′
, z) are the seven local coordinates on the S7. Note

that e zT ′
in (4.6) plays the role of a compensating local transformation of the stability

subgroup U ′(1).

The commutators of Pa′ close on the SU(3) generators LI (I = 1, . . . 8) and the U(1)

generator T1. Altogether Pa′ , LI and T1 form the SU(4) algebra

[Pa′ , Pb′ ] = Ca′b′
ILI + 2Ja′b′ T1, [Pa′ , LI ] = Ca′I

b′Pb′ , [Pa′ , T1] = −4

3
Ja′b′P

b′ , (4.7)

[LI , LJ ] = CIJ
KLK , [LI , T1] = 0 , (4.8)

where CIa′b′ , CIJK and 2Ja′b′ are the structure constants of the SU(4) algebra. In terms

of SO(8) generators, T1 was given in (4.3)–(4.4), and Pa′ and Ca′b′
ILI are (See appendix C

for more details)

Pa′ = −Ma′8 + Ja′
b′ Mb′7 , (4.9)

Ca′b′
ILI = (δc′

a′ δd′

b′ + Ja′
c′ Jb′

d′)Mc′d′ −
1

3
Ja′b′ J

c′d′ Mc′d′ . (4.10)
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The Cartan form K−1dK determines the vielbeins and the SU(3)×U ′(1) connections

on SU(4)×U(1)
SU(3)×U ′(1)

K−1dK = dyn′
en′

a′
(y)Pa′ + (dz + dyn′

An′(y))P7

+dyn′
ωn′

I(y)LI +

(

dz − 1

3
dyn′

An′(y)

)

T ′ , (4.11)

where

e â′

=
(

ea′
, e7
)

, ea′
= dyn′

en′
a′

(y) , e7 = dz + dyn′
An′(y) (4.12)

are the S7 vielbeins, with ea′
(y) and A(y) being associated with the vielbein and U(1)

connection on CP 3, and

ωI = dyn′
ωn′

I(y) , ω′ = dz − 1

3
dyn′

An′(y) (4.13)

are the SU(3) and U ′(1) connections respectively.

With the connections defined as in eq. (4.13), the coset space SU(4)×U(1)
SU(3)×U ′(1) has torsion.

This is because its stability subgroup U ′(1) is associated with the generator T ′ defined in

eq. (4.1). One can see this analyzing the Maurer-Cartan equation

d(K−1dK) − (K−1dK) (K−1dK) = 0 (4.14)

from which follows, in particular, that

D ea′ ≡ dea′
+ eb′ ωI CIb′

a′ − eb′ Jb′
a′

ω′ = − eb′ e7 Jb′
a′

=
1

2
e b̂′e ĉ′ Tĉ′b̂′

a′
, (4.15)

d e7 = eb′ec′Jb′c′ =
1

2
e b̂′ e ĉ′ Tĉ′b̂′

7 , (4.16)

where Tb̂′ ĉ′
â′

(â′ = (a′, 7) etc.) are the components of the torsion tensor of the coset man-

ifold SU(4)×U(1)
SU(3)×U ′(1) . To make the geometry on this manifold torsion-free, as in the standard

Riemannian case, we should redefine its connection as follows

Ω â′ b̂′ = (Ωa′b′ , Ωa′7) , (4.17)

where

Ω a′b′ = ωICI
a′b′ − ω′ Ja′b′ = ωa′b′ − e7 Ja′b′ , Ωa′7 = −Ω7a′

= eb′Jb′
a′

(4.18)

while

ωa′b′ = ωICI
a′b′ +

4

3
dxn′

An′Ja′b′ (4.19)

is the Riemannian U(3) connection on CP 3.

One can show that the curvature of the SU(4)×U(1)
SU(3)×U ′(1) coset associated with the connec-

tion (4.17) is

dΩâ′ b̂′ + Ωâ′

ĉ′ Ω
ĉ′b̂′ = e â′

e b̂′ , (4.20)
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where the vielbeins e â′
were defined in (4.12). We see that the curvature (4.20) is that of

the round S7 sphere.16 This completes the demonstration that the Hopf fibration over CP 3

associated with the coset space SU(4)×U(1)
SU(3)×U ′(1) and endowed with the Riemann connection and

curvature is the 7-sphere having SO(8) isometry, which is enhanced with respect to the

initial SU(4) × U(1) manifest symmetry of the coset.

The U(1) bundle realization (4.12) of the vielbeins of S7 is very convenient for perform-

ing the Kaluza-Klein dimensional reduction of the AdS4×S7 solution of D = 11 supergrav-

ity down to the corresponding AdS4 × CP 3 solution of IIA D = 10 supergravity [40, 41]

D = 11 : e Â = (ea, e â′
) ⇒ D = 10 : eA = (ea, ea′

), (4.21)

where ea = dxmem
a(x) (a = 0, 1, 2, 3) and xm (m = 0, 1, 2, 3) are AdS4 vielbeins and

coordinates respectively, eâ′
are the S7 vielbeins (4.12) and ea′

= dyn′
en′

a′
(y) are the

CP 3 vielbeins.

For further comparison with the superspace case, it is important to note that in the

given realization, the components eB̂
Â(x, y) of the D = 11 vielbeins of AdS4 × S7 do not

depend on the U(1) bundle coordinate z and that their components e7
a and e7

a′
vanish

e7
a = 0, e7

a′
= 0 . (4.22)

Such a choice of the vielbein directly corresponds to the Kaluza-Klein ansatz for the com-

pactification on a circle S1 and Am′(y) is associated with the potential of an Abelian gauge

field in the reduced theory.

In our case the field strength of Am′(y) is the flux proportional to the Kähler form

Ja′b′ on CP 3

dA = F2 =
1

2
ea′

eb′Fb′a′ = ea′
eb′ Ja′b′ . (4.23)

Together with the F4 flux whose non-zero components are along AdS4, with Fabcd =

−6 εabcd, the F2 flux completes (the bosonic part of) the compactification of IIA type

supergravity on AdS4 × CP 3.

It should be noted that the Kaluza-Klein condition analogous to (4.22) is always re-

quired in order for the action and equations of motion of the dimensionally reduced theory

to have a conventional gauge structure, describing the interactions of an Abelian gauge

field with gravity. In general, it can always be achieved by performing an appropriate local

Lorentz transformation of the vielbeins in the original D + 1-dimensional theory such that

their components with one world index along the compactified direction and D indices

along the reduced D-dimensional tangent space vanish (as in eq. (4.22)).

In the case of the Kaluza-Klein dimensional reduction of the bosonic space AdS4 × S7

to ten dimensions, we have arrived at the Kaluza-Klein ansatz corresponding to the repre-

sentation of the S7 as a Hopf fibration over CP 3. As we shall see, this is not the case when

the Hopf fibration is lifted to the D=11 supermanifold OSp(8|4)/SO(7)×SO(1, 3) having 32

fermionic directions. An additional local Lorentz transformation, which is not part of the

16We put the radius of S7 and the corresponding size of CP 3 to be one. The AdS4 radius of the D = 11

and D = 10 solution is 1/2 of that of the compact manifold.
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OSp(8|4) isometries, will be required to bring the supervielbeins of this supermanifold to the

Kaluza-Klein form, thus allowing us to perform its dimensional reduction to the AdS4×CP 3

type IIA supergravity solution in D = 10 superspace with 32 fermionic coordinates.

5 Lifting the S7 Hopf fibration to D = 11 superspace

The superfield descriptions of type IIA D = 10 and of D = 11 supergravity are based

on a superspace with 32 fermionic coordinates which in the AdS4 × CP 3 and AdS4 × S7

backgrounds can be described by spinors θαα′
carrying AdS4 Majorana spinor indices (α =

1, 2, 3, 4) and the indices (α′ = 1, . . . , 8) of an 8-dimensional spinor representation of SO(6)

or SO(8), respectively. In the AdS4 × S7 solution of D = 11 supergravity, θαα′
are the

coordinates of the coset supermanifold OSp(8|4)/SO(7) × SO(1, 3) associated with the 32

Grassmann-odd generators Qαα′ of OSp(8|4) (for a detailed description see e.g. [24, 25]).

On the other hand, the coset supermanifold OSp(6|4)/U(3)×SO(1, 3) (for its detailed

description see e.g. [27–29, 31]) is parametrized by ten bosonic coordinates XM = (xm, ym′
)

corresponding to its bosonic body AdS4×CP 3 and by 24 fermionic coordinates ϑαa′
, where

again α = 1, 2, 3, 4 are the AdS4 Majorana spinor indices and a′ = 1, . . . , 6 are the indices

of a 6-dimensional representation of SO(6) ≃ SU(4). The 24 fermionic coordinates are

associated with the 24 Grassmann-odd generators Qαa′ of the OSp(6|4) algebra.

The 24 generators Qαa′ and the corresponding fermionic coordinates ϑαa′
can be ob-

tained from the 32 Grassmann-odd generators Qαα′ of OSp(8|4) and the coordinates θαα′

by acting on the SO(8) spinor indices with the projection matrix P6 introduced in [40]

(see [31] and appendices B and C.2 for more details)

P6 =
1

8
(6 − J) , (5.1)

where J is the 8 × 8 symmetric matrix

J = −iJa′b′ γ
a′b′ γ7 such that J2 = 4J + 12 , (5.2)

with γa′

α′β′ (a′ = 1, . . . , 6) and γ7
α′β′ being seven 8 × 8 gamma matrices (see appendix A).

The matrix J has six eigenvalues −2 and two eigenvalues 6, i.e. its diagonalization is

given by

J = diag(−2,−2,−2,−2,−2,−2, 6, 6) . (5.3)

Therefore, the projector (5.1) when acting on an 8-dimensional spinor annihilates 2 com-

ponents and preserves 6 of its components, while the complementary projector

P2 =
1

8
(2 + J) , P2 + P6 = 1 (5.4)

annihilates 6 and preserves 2 spinor components.

Thus the generators

(P6 Q)αα′ ⇐⇒ Qαa′ , a′ = 1, . . . , 6 (5.5)
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have 24 non-zero components and can be associated with the 24 Grassmann-odd generators

Qαa′ of OSp(6|4). Accordingly, the 24 fermionic variables

(P6 θ)αα′ ⇐⇒ ϑαa′
, a′ = 1, . . . , 6 (5.6)

can be associated with the 24 fermionic coordinates ϑαa′
of OSp(6|4)/U(3) × SO(1, 3).

On the other hand, acting on Qαα′ with the projector P2 (5.4) one gets 8 generators

(P2 Q)αα′ ⇐⇒ Qαi, i = 7, 8 (5.7)

which correspond to the eight supersymmetries broken by the AdS4 × CP 3 background.

The associated 8 fermionic coordinates of the type IIA superspace are

(P2 θ)αα′ ⇐⇒ υαi , i = 7, 8 . (5.8)

Note that the eight operators Qαi generate an OSp(2|4) subalgebra of OSp(8|4) (see ap-

pendices B and C.2 for more details)

{Qαi,Qβj} = −2iǫij γ5
αβ T2 − 2 δij (γa

αβ Pa − i(γ5γab)αβ Mab), (5.9)

[Mab,Qαi] = −1

2
Qβi (γab)

β
α , [Pa,Qαi] = iQβi (γ5γa)

β
α , [T2,Qαi] = 2ǫij Qαj ,

where T2 is the U(1) ≃ SO(2) generator of SO(8) in OSp(8|4) which commutes with

OSp(6|4), so that OSp(6|4) × SO(2) is a subgroup of OSp(8|4). Recall that we have intro-

duced the generator T2 in section 4.

The generators Pa and Mab form the Sp(4) ≃ Spin(2, 3) algebra

[Pa, Pb] = −4Mab, [Mab,Mcd] = ηac Mbd + ηbd Mac − ηbc Mad − ηad Mbc . (5.10)

[Mab, Pc] = ηac Pb − ηbc Pa . (5.11)

5.1 Hopf fibration of the OSp(6|4)/U(3) × SO(1, 3) supercoset

Let us now lift the OSp(6|4)/U(3) × SO(1, 3) solution of IIA supergravity to D = 11 by

constructing a U(1) bundle over this supermanifold along the lines of the Hopf fibration of

S7 discussed in section 4. This is realized by constructing a coset superspace

OSp(6|4) × U(1)

SU(3) × U ′(1) × SO(1, 3)
, (5.12)

having 11 bosonic and 24 fermionic directions. In (5.12) U(1) is generated by T2 and U ′(1)

is generated by T ′ = 3
4(T2 − T1) (see eq. (4.1)). We take a coset representative of this

superspace in the following form

K11,24(x, y, z, ϑ) = K10,24(x, y, ϑ) e z T2 (5.13)

where K10,24(x, y, ϑ) is a coset representative of OSp(6|4)/U(3) × SO(1, 3) which can be

taken in any convenient form, e.g. in one of those considered in [27–29, 31] (or appendix A).
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The supervielbeins and superconnections of the supercoset (5.12) are encoded in the

OSp(6|4) × U(1) Cartan form

K−1
11,24

dK11,24 = K−1
10,24

dK10,24 + dz T2 , (5.14)

where the OSp(6|4) Cartan form

K−1
10,24

dK10,24 = Ea(x, y, ϑ)Pa + Ea′
(x, y, ϑ)Pa′ + Eαa′

(x, y, ϑ)Qαa′ (5.15)

+
1

2
Ωab(x, y, ϑ)Mab + ΩI(x, y, ϑ)LI + A(x, y, ϑ)T1

contains the supervielbeins and superconnections of OSp(6|4)/U(3) × SO(1, 3) whose ex-

plicit form can be found in [27–29, 31] (or appendix A). The SU(3) × U(1) generators LI

and T1 have been introduced in section 4.

Now, as in the case of the 7-sphere, eq. (4.11), we single out proper supervielbeins and

superconnections of the supercoset (5.12) as follows

K−1
11,24

dK11,24 = Ea(x, y, ϑ)Pa + Ea′
(x, y, ϑ)Pa′ + (dz + A(x, y, ϑ)) P7 + Eαa′

(x, y, ϑ)Qαa′

+
1

2
Ωab(x, y, ϑ)Mab + ΩI(x, y, ϑ)LI + (dz − 1

3
A(x, y, ϑ))T ′. (5.16)

Given that

ZM̃ = (xm, ym′
, ϑαa′

) (5.17)

are the supercoordinates parametrizing OSp(6|4)/U(3) × SO(1, 3) and that z is the coor-

dinate of the Hopf fiber, the 11 bosonic and 24 fermionic supervielbeins are given by

EÂ = (Ea, Eâ′
) , Ea = dZM̃ EM̃

a(x, y, ϑ) , E â′
= dZM̃ EM̃

â′
(x, y, ϑ) = (Ea′

, E7) ,

E7 = dz + dZM̃ AM̃(x, y, ϑ) (5.18)

while the 24 fermionic supervielbeins are

Eαa′
= dZM̃ EM̃

αa′
(x, y, ϑ) . (5.19)

The connections of the stability group U(3) × SO(1, 3) are given in the last line of (5.16).

We see that the components of the supervielbeins and connections do not depend on

the 11th coordinate z, which appears only in the differential of the E7 vielbein. Moreover,

the supervielbein components dz EA
7 = (dz E7

a, dz E7
a′

, dz E7
αa′

) are all zero. Thus, the

realization of the coset supermanifold (5.12) considered above has a Hopf fibration structure

generalizing that of the 7-sphere. The dimensional reduction of this supermanifold to

D = 10 is then straightforward. One must just project it orthogonally to the U(1) fiber

direction, i.e. to pick Ea, Ea′
and Eαa′

as the supervielbeins of the D = 10 superspace and

to consider dZM̃ AM̃(x, y, ϑ) as the RR one-form potential of the type IIA supergravity

theory. Note that in this reduced type IIA superspace solution, the dilaton superfield is

constant and the dilatino superfield vanishes.

The difference with respect to the purely bosonic case is that whereas the S7 fibration

has an enhanced SO(8) isometry, the isometry supergroup of the supermanifold (5.12) is
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still OSp(6|4)×U(1), since SO(8) is not its subgroup. The extension to SO(8) and, hence,

to OSp(8|4) requires the introduction of 8 additional Grassmann-odd generators.

On the other hand, it can be directly verified that the D = 11 superspace with 24

fermionic directions considered above is a solution of superfield constraints of D = 11

supergravity (and, hence, of its equations of motion). It thus provides a description of

the maximally supersymmetric AdS4 × S7 solution in a reduced superspace which can be

regarded as a sub-superspace of OSp(8|4)/SO(7) × SO(1, 3).

5.2 U(1) bundle structure of the OSp(8|4)/SO(7) × SO(1, 3) supercoset

Let us now extend the supercoset (5.12) to the full OSp(8|4)/SO(7)× SO(1, 3) supercoset.

This is achieved by taking the following group element of OSp(8|4) as the coset represen-

tative of OSp(8|4)/SO(7) × SO(1, 3)

K11,32(x, y, z, θ) = K11,24(x, y, z, ϑ) e υαi Qαi = K10,24(x, y, ϑ) e z T2 e υαi Qαi , (5.20)

where K11,24(x, y, z, ϑ) is the same coset representative as in (5.13) and θ = (ϑ, υ) are

the 32-component fermionic coordinates which, using the projectors (5.1) and (5.4), split

into 24-component ϑ’s and 8-component υ’s. Note that the group element e υαi Qαi can be

regarded as the representative of the purely fermionic supercoset OSp(2|4)
SO(2)×SO(2,3) .

The OSp(8|4)-valued Cartan form constructed with (5.20) is

K−1
11,32

dK11,32 = e−υ Q (K−1
11,24

dK11,24) e υ Q + e−υQ d e υ Q (5.21)

= e−υ Q (K−1
10,24

dK10,24) e υ Q + dz e−υQ T2 e υQ + e−υQ d e υ Q

or, using the commutation relations (5.9) and the form of K−1
10,24

dK10,24 (5.15)

K−1
11,32

dK11,32 = Ea(x, y, ϑ) e−υ Q Pa e υQ + Eαa′
(x, y, ϑ) e−υ Q Qαa′ e υQ + Ea′

(x, y, ϑ)Pa′

+
1

2
Ωab(x, y, ϑ) e−υ Q Mab e υQ + ΩI(x, y, ϑ)LI + A(x, y, ϑ)T1 (5.22)

+dz e−υQ T2 e υQ + e−υ Q d e υ Q .

Note that the supervielbein and connection terms in (5.22) corresponding to the SU(4)

generators Pa′ , LI and T1 do not receive contributions from υαi, since these generators

commute with Qαi.

Furthermore, we can expand the Cartan form (5.22) in the basis of the OSp(8|4)
generators. The expansion contains generators along the AdS4, CP 3 and z directions,

along the generators of their stability group SO(1, 3) × SU(3) × U ′(1) and the rest. It is

given by

K−1
11,32

dK11,32 = Ea
11,32

Pa + Ea′

11,32
Pa′ + E7

11,32
P7 + Eαi

11,32
Qαi + Eαa′

11,32
Qαa′ (5.23)

+
1

2
Ωab

11,32
Mab + ΩI

10,24
LI + Ω′

11,32
T ′ + Ω̃a′i

11,32
M̃a′i,

where, we remind the reader that P7 and T ′ were defined in (4.1) and (4.2), while

M̃a′i ⇔ 1

4
P6γ

ã′b̃′P2 Mã′ b̃′ +
i

2
P6γ

a′P2 Pa′ , (5.24)
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with Mã′ b̃′ being the generators of SO(8) (see appendix B). M̃a′i are the generators which

complete the SO(6)× SO(2) algebra to SO(8). They differ from the generators Ma′i intro-

duced in appendix B, eqs. (B.21)–(B.23), by the shift along the CP 3 translations generated

by Pa′ = −Ma′8 + Ja′
b′ Mb′7. The reason for this redefinition is that the commutators of

the generators Ma′i, defined in eqs. (B.22), produces the generators of the SO(6) × SO(2)

subgroup of the SO(8) group, and, in particular the CP 3 coset generators Pa′ . Thus, Ma′i

themselves cannot be regarded as generators belonging to the structure group SO(7) of the

7-sphere. The commutators of the SO(7) generators should not produce the translations

along S7. Therefore, to make Ma′i part of SO(7) one must redefine them as in eq. (5.24).

This redefinition results in the appearance of the additional (second) term in the expression

for the supervielbein Ea′

11,32 in eq. (5.25) below.

All functions of υαi in (5.23) can be explicitly computed using the commutation re-

lations (5.9), (B.21) and (B.23) and applying the method described e.g. in [22–25]. The

supervielbeins we get are

Ea
11,32

= Ea
10,24

− 4υγa sinh2 M/2

M2
Dυ + dz E7

a(υ) ,

Ea′

11,32
= Ea′

10,24
− 2υ

sinh m

m
γa′

γ5 E10,24 ,

E7
11,32

= dz Φ(υ) + A10,24 − 4iυ εγ5 sinh2 M/2

M2
Dυ ,

Eαi
11,32

=

(

sinhM
M (Dυ − 2dz ευ)

)αi

,

Eαa′

11,32
= Eαa′

10,24
− 8Eβa′

10,24

(

iγ5 υ
sinh2 m/2

m2

)

βi

υαi ,

(5.25)

the SO(1, 3) connection is

Ωab
11,32

= Ωab
10,24

+ 8iυγabγ5 sinh2 M/2

M2
(Dυ − 2dz ευ) , (5.26)

the one-form Ω̃a′i is

Ω̃a′i
11,32

= 4Eαa′

10,24

(

iγ5 υ
sinhm

m

)i

α

(5.27)

and the one-form Ω′
11,32

is

Ω′
11,32

= dz Φ(υ) − 1

3
A10,24 − 4iυ εγ5 sinh2 M/2

M2
Dυ . (5.28)

The SO(7) connection in the considered realization of the supercoset OSp(8|4)/SO(7) ×
SO(1, 3) can be computed from (5.23) and has the form

1

2
Ωa′b′

11,32
Ma′b′ + Ωa′7

11,32
Ma′7 =

(

Eb′

11,32
+ 4υ

sinhm

m
γb′γ5 E10,24

)

Jb′
a′

Ma′7 (5.29)

+
1

2

(

Ωa′b′

10,24
−E7

11,32
Ja′b′−2iυ

sinhm

m
γa′b′γ5 E10,24

)

Ma′b′ .
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The functions appearing in (5.25)–(5.28) are defined as17

(M2)αi
βj = 4i(ευ)αi(υεγ5)βj − 2i(γ5γaυ)αi(υγa)βj − i(γabυ)αi(υγabγ

5)βj ,

(m2)ij = −4iυi γ5 υj , (5.30)

E7
a(υ) = 8υγa sinh2 M/2

M2
ε υ ,

Φ(υ) = 1 + 8i υ εγ5 sinh2 M/2

M2
ευ (5.31)

and

Dυ =

(

d + iEa
10,24

γ5γa −
1

4
Ωab

10,24
γab

)

υ . (5.32)

All quantities in (5.25)–(5.32) labeled as E10,24, Ω10,24 etc. are the ones which describe the

supercoset OSp(6|4)/U(3) × SO(1, 3) and are explicitly known (see e.g. [22, 27–29, 31] and

appendix A).

Analyzing eqs. (5.22)–(5.32) we observe, in particular, that due to the multiplication

by e υ Q in (5.22), the AdS4 supervielbeins and the SO(1, 3) superconnections (5.15) cor-

responding to the supercoset OSp(6|4)/U(3) × SO(1, 3) acquire non-trivial dependence

on the 8 additional fermionic variables υαi. In the first line of (5.22) and in (5.23)

there are also terms with components of the superconnection corresponding to the gen-

erators (5.24) which extend the SO(6)× SO(2) algebra to SO(8) because of the non-trivial

anti-commutators of the 24 supersymmetry generators Qαa′ with the 8 supersymmetry

generators Qαi (eqs. (B.21)–(B.23)).

We also observe that, in contrast to the cases discussed in sections 4 and 5.1, the U(1)-

bundle realization of the OSp(8|4)/SO(7)×SO(1, 3) supercoset geometry in (5.23) does not

allow for its direct dimensional reduction to a D = 10 superspace because of the presence of

the term dz E7
a(υ). This term contributes to the components of the supervielbein along the

directions tangent to AdS4 and has a ‘leg’ along the compactified direction parametrized

by the z-coordinate.18 As we discussed in the end of section 4, to perform the Kaluza-Klein

dimensional reduction such components of the (super)vielbein must be put to zero.

From the supervielbeins in (5.25) we can also construct the supergeometry correspond-

ing to the superspace with AdS4×S7/Zk bosonic body, a background of eleven dimensional

supergravity which preserves 24 supersymmetries (for k > 2) and is the near horizon ge-

ometry of N M2-branes probing the C4/Zk singularity. Geometrically, this superspace is

obtained by orbifolding the OSp(8|4)/SO(7)×SO(1, 3) supercoset geometry by Zk ⊂ U(1),

where U(1) is the commutant of SU(4) in SO(8). The corresponding supervielbeins are

simply obtained from those in (5.25) by replacing z → z/k.

17Note that only positive even powers of M and m appear in the above expressions when they

are expanded.
18A somewhat amusing remark is that the term dz E7

a(υ), in a certain sense, ‘mixes’ the AdS4 geometry

with the U(1) fiber direction of the S7. On the other hand, the more ‘natural’ terms like dz E7
a′

(υ) along

the CP 3 tangent space, which would mix the Hopf fiber direction with CP 3, are absent. They would

correspond to some vielbein components on the S7.
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5.3 Hopf fibration form of the OSp(8|4)/SO(7) × SO(1, 3) geometry and its re-

duction to type IIA superspace

To eliminate the term dz E7
a(υ) from the OSp(8|4)/SO(7) × SO(1, 3) supervielbein we

should perform an appropriate local Lorentz rotation in the 5-plane (Ea, E7) tangential to

AdS4 ×S1, where S1 is the U(1) fiber direction in S7. Obviously, such a transformation is

not an isometry of the coset supermanifold OSp(8|4)/SO(7)×SO(1, 3) and should therefore

be regarded simply as a change of local frame. Upon this Lorentz transformation we

shall get the D = 11 supervielbeins in a form which will allow us to directly identify the

corresponding D = 10 supervielbeins, the RR one-form gauge superfield and the dilaton

superfield of type IIA supergravity.

Let EÂ = (Ea, Ea′
, E7) be the 11 bosonic components of the OSp(8|4)/SO(7) ×

SO(1, 3) supervielbein given in (5.25). To eliminate the dz E7
a(υ) component of Ea we

perform the following Lorentz transformation

Ea = Eb Λb
a(υ) + E7 Λ7

a(υ) , E7 = Eb Λb
7(υ) + E7 Λ7

7(υ) , (5.33)

where the parameters Λb̂
â(υ) (â = (a, 7) = 0, 1, 2, 3, 7) depend on the 8 fermionic coordi-

nates υαi and satisfy the 5-dimensional Lorentz group orthogonality conditions

Λâ
ĉ Λb̂

d̂ ηĉd̂ = ηâb̂, (5.34)

or in components

Λa
c Λb

d ηcd + Λa
7 Λb

7 = ηab, Λ7
c Λ7

d ηcd + (Λ7
7)2 = 1, Λ7

c Λa
d ηcd + Λ7

7Λa
7 = 0 (5.35)

and

Λa
c Λb

d ηab+Λ7
c Λ7

d = ηcd, Λc
7 Λd

7 ηcd+(Λ7
7)2 = 1, Λc

7 Λd
a ηcd+Λ7

7Λ7
a = 0 . (5.36)

In addition Λb̂
â(υ) is determined by the requirement that the E7

a component of the

transformed supervielbein vanishes and that at υ = 0 it reduces to the unit matrix

Λb̂
â(υ)|υ=0 = δb̂

â , E7
a = E7

b Λb
a + Φ Λ7

a = 0 , (5.37)

where Φ(υ) := E7
7, Φ(0) = 1 (see eq. (5.31)). From eq. (5.37) we find that

Λ7
a(υ) = − 1

Φ(υ)
E7

b(υ)Λb
a(υ) . (5.38)

Then, solving the orthogonality conditions (5.35) and (5.36) we find the expressions for the

parameters of the Lorentz transformation in terms of E7
a(υ) and Φ(υ)

Λ7
7 =

Φ√
Φ2 + E2

, (5.39)

Λa
7 =

E7 a√
Φ2 + E2

, (5.40)

– 23 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
5

where E2 ≡ E7
a E7

b ηab, and

Λa
c Λb

d ηcd = ηab −
E7 a E7 b

Φ2 + E2
, (5.41)

Λa
b = δa

b − E7a E7
b

√
Φ2 + E2 − Φ

E2
√

Φ2 + E2
⇒ det Λa

b =
Φ√

Φ2 + E2
.

Finally eq. (5.38) can be rewritten as

Λ7
a = − E7

a

√
Φ2 + E2

. (5.42)

One can notice that Λb̂
â depend only on the vector parameter 1

Φ E7
a and thus can be

regarded as a kind of “Lorentz boost” along the S7 fiber direction.

The following ten components of the Lorentz transformed D = 11 supervielbeins

EA(x, y, ϑ, υ) = (Ea, Ea′
) , A = 0, 1, . . . , 9; a = 0, 1, 2, 3;a′ = 1, . . . , 6

(5.43)

Ea = Eb Λb
a(υ) + E7 Λ7

a(υ) , Ea′
= Ea′

form an appropriate bosonic supervielbein of the complete (32 - θ) superfield solution of type

IIA supergravity corresponding to the AdS4 × CP 3 vacuum. The IIA dilaton superfield is

e
2
3
φ(υ) = Φ Λ7

7 + E7
a Λa

7 =
√

Φ2 + E7
a E7

b ηab . (5.44)

One can notice that the dilaton superfield of this type IIA solution depends only on the

eight fermionic coordinates υαi which correspond to the broken supersymmetries of the

AdS4 × CP 3 background.

In addition to the Lorentz rotation of the vector supervielbeins, we should also perform

a corresponding Lorentz rotation of the components of the connections and of the spinor

supervielbeins Eαa′
and Eαi. In particular, the Lorentz rotation of the connection compo-

nents Ω a′7 will produce a “mixed” AdS4–CP 3 term Ω a′a = Ω a′7Λ7
a which transforms as

a tensor under U(3) × SO(1, 3) and hence can be absorbed into a redefined torsion of the

type IIA superspace.

As far as the Lorentz rotation of the spinor supervielbeins is concerned, it is worth

noting that the Lorentz rotation of the spinors associated with (5.34)–(5.36) is generated

by the gamma-matrices ΓaΓ11 = γa γ5 ⊗ γ7 which commute with the projectors (5.1)

and (5.4) and thus does not mix the 24 and 8-component spinors. The explicit form of

the Lorentz rotation acting on spinors, Sα
β(υ) (α = (αα′)), can be derived using the well

known relations between the vector and spinor representations of the Lorentz group

S−1 Γâ S = Γb̂ Λb̂
â , Sα

γ Sβ
δ Cγδ = Cαβ , (5.45)

where Γâ = (Γa,Γ11) are 32 × 32 gamma-matrices defined in (A.8) and C = C ⊗ C ′ is the

corresponding charge conjugation matrix.
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Since the Lorentz transformation giving rise to supervielbeins and connections compat-

ible with the KK ansatz corresponds to a Lorentz rotation with the “velocity” parameter

wa = E7
a/Φ, the corresponding matrix acting on the fermions (5.45) is given by

S = exp

(

− 1

2

wa

|w| ΓaΓ11 tan−1 |w|
)

(wa = E7
a/Φ)

= 2−1/2(1 + w2)−1/4

(√

√

1 + w2 + 1 − wa

|w| ΓaΓ11

√

√

1 + w2 − 1

)

.

(5.46)

Performing the Lorentz rotation described above, the D = 11 supervielbeins (upon a

Weyl rescaling) acquire a form which is suitable for the dimensional reduction to D = 10

superspace in the string frame [46, 47]:

E Â = (e−
1
3
φ EA, E11) , E11 = e

2
3
φ (dz + A1), (5.47)

Eα = e−
1
6
φ Eα + e

1
6
φ E11 (Γ11λ)α ,

where the index 11 is identified with the index 7 of the U(1) fiber direction of S7 and

A1(x, y, ϑ, υ) = e−
2
3
φ(υ) dZM (EM

a Λa
7 + EM

7 Λ7
7) . (5.48)

The one forms EA(x, y, θ) = (EA, Eα), A1(x, y, ϑ, υ), the spinor superfield λα(x, y, θ), with

non-zero components

λαi = −1

3
Dαi φ(υ) , (5.49)

and the scalar superfield φ(x, y, θ) do not depend on the 11th coordinate z. They describe,

respectively, the supervielbeins, the RR one-form gauge superfield, the dilatino and the

dilaton superfields of type IIA supergravity in the string frame, eqs. (2.4) and (2.5). The

RR field strength F4 and the NS-NS field strength H3 given in eqs. (2.6) are obtained from

the D = 11 four-form field strength by the conventional dimensional reduction described

in [47]. By construction they solve the type IIA supergravity constraints and describe

the AdS4 × CP 3 background which preserves 24 supersymmetries. The explicit form of

these and other relevant IIA superfields has been given in section 2. Using this AdS4 ×
CP 3 supergeometry, we can write down the complete Green-Schwarz-type action for the

superstring and D-branes on this background (section 3).

6 Conclusion

We have constructed the complete type IIA superspace with 32 fermionic coordinates which

describes the AdS4 × CP 3 vacuum solution of IIA supergravity preserving 24 supersym-

metries in terms of superfields depending on 32 fermionic coordinates. Our construction

guarantees that the geometry of this superspace and the vacuum configurations of NS-NS

and RR superfields living in it solve the type IIA supergravity constraints (and therefore the

full set of type IIA equations of motion).19 An important qualitative difference with previ-

ous constructions of supergeometries is that the AdS4×CP 3 superspace is not a coset space

and that the type IIA AdS4 × CP 3 superbackground is not maximally supersymmetric.

19As an alternative procedure of deriving this supergeometry one might try to directly solve the

type IIA supergravity constraints up to the 32-nd order in fermionic variables taking the 24-component

OSp(6|4)/U(3) × SO(1, 3) solution as the initial condition.
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Having the explicit form of the type IIA AdS4 ×CP 3 supergeometry has allowed us to

write down the Green-Schwarz-type action for the superstring and D-branes propagating

in this background. This provides us with a concrete framework in which to study the most

general classical and quantum dynamics of these branes. These actions complete to the full

32-component superspace the string sigma-model actions based on the OSp(6|4)/U(3) ×
SO(1, 3) supercoset constructed and studied in [27–29, 31].

We have analyzed the integrability of the classical equations of motion of the super-

string in different submanifolds of the full AdS4×CP 3 superspace. For the submanifold de-

scribed by the OSp(6|4)/U(3)×SO(1, 3) supercoset, the classical equations of motion are in-

tegrable, as already has been shown in [27, 28] following the integrability criteria for sigma-

models based on supercosets discovered by Bena, Polchinski and Roiban [32]. We have

also considered the supergeometry corresponding to the “complementary” submanifold in

AdS4×CP 3 superspace. Here we find that this sector of the theory is not based on a super-

coset, but on a “twisted” OSp(2|4)/SO(2)× SO(1, 3) superspace, whose supergeometry we

have explicitly constructed by restricting the total superspace to this submanifold. Whether

the equations of motion in this sector of the theory are classical integrable remains an impor-

tant open problem. The fact that the complete AdS4×CP 3 superspace is not a coset space

requires that more general methods are used to prove whether the superstring equations of

motion are classically integrable. The explicit construction in this paper of the geometry

for the AdS4 × CP 3 superspace provides a framework in which to study this problem.

Another important question for the future is to understand whether the classical dy-

namics of the string worldsheet can be encoded in the Hamiltonian describing the spectrum

of anomalous dimensions of the holographic dual ABJM theory, extending to this holo-

graphic correspondence the analogous results found for the AdS5/CFT4 correspondence.

It also remains a challenge to find more arguments in favour of the exact integrability

of the planar dilatation operator in the ABJM theory. The ultimate fate of the classical

integrability of the Green-Schwarz superstring action in AdS4 ×CP 3 and the integrability

of the planar ABJM dilatation operator are likely to be related, and remain amongst the

most important open problems in this new holographic correspondence.
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A Main notation and conventions

The convention for the ten and eleven dimensional metrics is the ‘almost plus’ signature

(−,+, . . . ,+). Generically, the tangent space vector indices are labeled by letters from the

beginning of the Latin alphabet, while letters from the middle of the Latin alphabet stand

for curved (world) indices. The spinor indices are labeled by Greek letters.

AdS4 space

AdS4 is parametrized by the coordinates xm and its vielbeins are ea = dxm em
a(x), m =

0, 1, 2, 3; a = 0, 1, 2, 3. The D = 4 gamma-matrices satisfy:

{γa, γb} = 2 ηab , ηab = diag (−,+,+,+) , (A.1)

γ5 = iγ0 γ1 γ2 γ3, γ5 γ5 = 1 . (A.2)

The charge conjugation matrix C is antisymmetric, the matrices (γa)αβ ≡ (C γa)αβ and

(γab)αβ ≡ (C γab)αβ are symmetric and γ5
αβ ≡ (Cγ5)αβ is antisymmetric, with α, β =

1, 2, 3, 4 being the indices of a 4-dimensional spinor representation of SO(1, 3) or SO(2, 3).

CP 3 space

CP 3 is parametrized by the coordinates ym′
and its vielbeins are ea′

= dym′
em′

a′
(y),

m′ = 1, . . . , 6; a′ = 1, . . . , 6. The D = 6 gamma-matrices satisfy:

{γa′
, γb′} = 2 δa′b′ , δa′b′ = diag (+,+,+,+,+,+) , (A.3)

γ7 =
i

6!
ǫ a′

1a′
2a′

3a′
4a′

5a′
6
γa′

1 · · · γa′
6 γ7 γ7 = 1 . (A.4)

The charge conjugation matrix C ′ is symmetric and the matrices (γa′
)α′β′ ≡ (C γa′

)α′β′

and (γa′b′)α′β′ ≡ (C ′ γa′b′)α′β′ are antisymmetric, with α′, β′ = 1, . . . , 8 being the indices of

an 8-dimensional spinor representation of SO(6) or SO(8).

Seven-sphere

S7 is parametrized by the coordinates ŷm̂′
= (ym′

, z), where z stands for the coordinate of

the Hopf fiber in the description of S7 as a U(1) bundle over CP 3, and its vielbeins are

eâ′
= dŷm̂′

em̂′
â′

(ŷ), m̂′ = (m′, 7); â′ = (a′, 7). The D = 7 gamma-matrices are given by

γâ′
= (γa′

, γ7) , (A.5)

and satisfy the Clifford algebra

{γâ′
, γ b̂′} = 2 δâ′ b̂′ , δâ′ b̂′ = diag (+,+,+,+,+,+,+) . (A.6)
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Type IIA AdS4 × CP 3 superspace

The type IIA superspace whose bosonic body is AdS4×CP 3 is parametrized by 10 bosonic

coordinates XM = (xm, ym′
) and 32-fermionic coordinates θµ = (θµµ′

) (µ = 1, 2, 3, 4; µ′ =

1, . . . , 8). These combine into the superspace supercoordinates ZM = (xm, ym′
, θµµ′

). The

type IIA supervielbeins are

EA = dZM EMA(Z) = (EA, Eα) , EA(Z) = (Ea, Ea′
) , Eα(Z) = Eαα′

. (A.7)

The D = 10 gamma-matrices ΓA are given by

{ΓA, ΓB} = 2ηAB , ΓA = (Γa, Γa′
) , (A.8)

Γa = γa ⊗ 1, Γa′
= γ5 ⊗ γa′

, Γ11 = γ5 ⊗ γ7, a = 0, 1, 2, 3; a′ = 1, . . . , 6 .

The charge conjugation matrix is C = C ⊗ C ′.

Torsion constraint

Our convention for the essential constraint on the torsion D EA = 1
2 EC EB TBC

A of IIA

supergravity is TA
αβ = 2ΓA

αβ. This choice is related to the form of the OSp(8|4) algebra

(appendix B, eq. (B.7)) and differs from that of [47] by the factor 2i.

Explicit form of the vielbeins and connections of OSp(6|4)/U(3) × SO(1, 3)

The Cartan form is

K−1
10,24

dK10,24 = Ea
10,24

Pa + Ea′

10,24
Pa′ + Eαa′

10,24
Qαa′ (A.9)

+
1

2
Ωab

10,24
Mab +

1

2
Ωa′b′

10,24
(La′b′ −

1

6
Ja′b′ J

c′d′Lc′d′) + A10,24 T1.

Computing these quantities explicitly using the commutation relations (B.15), the form of

the SU(4) generators of appendix C.2 and applying the method described e.g. in [22–25]

one finds

Ea
10,24

= ea(x) − 4ϑγa sinh2 M24/2

M2
24

D24ϑ,

Ea′

10,24
= ea′

(y) − 4ϑγa′
γ5 sinh2 M24/2

M2
24

D24ϑ ,

Eαa′

10,24
=

(

sinhM24

M24
D24ϑ

)αa′

,

Ωab
10,24

= ωab(x) + 8iϑγabγ5 sinh2 M24/2

M2
24

D24ϑ ,

Ωa′b′

10,24
= ωa′b′(y) − 4iϑ(γa′b′ − iJa′b′γ7)γ5 sinh2 M24/2

M2
24

D24ϑ ,

A10,24 =
1

8
Ja′b′Ω

a′b′

10,24
= A(y) − 4ϑγ7γ5 sinh2 M24/2

M2
24

D24ϑ ,

(A.10)

where

(M2
24

)αa′

βb′ =4iϑα
b′(ϑ

a′
γ5)β−4iδa′

b′ ϑ
αc′(ϑγ5)βc′−2i(γ5γaϑ)αa′

(ϑγa)βb′−i(γabϑ)αa′
(ϑγabγ

5)βb′ .

(A.11)
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The derivative appearing in the above equations is defined as

D24ϑ = P6

(

d + ieaγ5γa + iea′
γa′ − 1

4
ωabγab −

1

4
ωa′b′ γa′b′

)

ϑ , (A.12)

where ea(x), ea′
(y), ωab(x), ωa′b′(y) and A(y) are the vielbeins and connections of the

bosonic AdS4 × CP 3 solution (see section 4).

The U(3)-connection Ωa′b′

10,24
= Ωa′b′

SU(3)
+ 4

3 A10,24 Ja′b′ satisfies the condition

(P−)a′b′
c′d′

Ωc′d′ =
1

2
(δ[a′

c′ δb′]
d′ − J[a′

c′ Jb′]
d′)Ωc′d′ = 0 , (A.13)

where Ja′b′ is the Kähler form on CP 3. Remember also that ϑ = P6 θ (see eqs. (C.8)

and (C.12)).

Superspace OSp(8|4)/SO(7) × SO(1, 3)

Its bosonic body is AdS4 × S7 and it is parametrized by the supercoordinates

ẐM̂ = (ZM, z) = (xm, ym′
, z, θµµ′

). The corresponding supervielbeins are

EÂ
11|32

= dẐM̂ ÊM̂
Â(Ẑ) = dZM ÊM

Â(Ẑ) + dz Ê7
Â(Ẑ) = (ÊA, Ê7, Êαα′

) . (A.14)

The label 7 stands for the 7th direction along S7 and 11-th direction of D = 11.

B OSp(8|4), OSp(2|4) and OSp(6|4)

OSp(8|4) superalgebra20

This superalgebra consists of the following:

SO(2, 3) ≃ Sp(4) subalgebra.

[Pa, Pb] = −4Mab, [Mab,Mcd] = ηac Mbd + ηbd Mac − ηbc Mad − ηad Mbc , (B.1)

[Mab, Pc] = ηac Pb − ηbc Pa (B.2)

where Pa are the generators of AdS4 translations and Mab are the generators of SO(1,3).

SO(8) subalgebra.

[Mã′ b̃′ , Mc̃′ d̃′ ] = δã′ c̃′ Mb̃′ d̃′ − δb̃′ c̃′ Mã′ d̃′ + δb̃′ d̃′ Mã′ c̃′ − δã′ d̃′ Mb̃′ c̃′ . (B.3)

where

Mã′ b̃′ = (Ma′b′ , Ma′7, Ma′8, M78) , (B.4)

and Ma′b′ (a′, b′ = 1, . . . , 6) are the generators of SO(6).

20Our conventions are similar to those in [61] modulo the minus sign in the definition of the generators

of SO(1, 3) and SO(8).
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Supersymmetry generators Qαα′ in OSp(8|4)

[Pa, Qαα′ ] = i(Qα′ γ5γa)α , [Mab , Qαα′ ] = −1

2
(Qα′ γab)α , (B.5)

[Mã′ b̃′ , Qαα′ ] = −1

2
(Qα γ̃ã′ b̃′)α′ , (B.6)

{Qαα′ , Qββ′} = −2C ′
α′β′ (γa

αβ Pa − i(γ5γab)αβ Mab) − iγ5
αβ (γ̃ã′ b̃′)α′β′ Mã′ b̃′ , (B.7)

where α = 1, 2, 3, 4 are Spin(2, 3) indices and α′ = 1, . . . , 8 are Spin(8) indices. We re-

mind the reader that the matrices C ′
α′β′ , γa

αβ = (Cγa)αβ and γab
αβ ≡ (Cγab)αβ are symmetric

in spinor indices and the matrices Cαβ , γ5
αβ ≡ (Cγ5)αβ and (γ̃ã′ b̃′)α′β′ are antisymmetric.

The 8 × 8 matrices γ̃ã′ b̃′ — which generate SO(8) — are given by

γ̃ã′ b̃′ = −γ̃ b̃′ã′
= (γa′b′ , γa′7, γa′8, γ78) , γa′8 ≡ i γa′

, γ78 ≡ i γ7. (B.8)

OSp(2|4) superalgebra

This algebra has 8 Grassmann-odd generators Qαi (i = 1, 2) which obey the following

(anti)commutation relations

[Pa, Qαi] = i(Qi γ5γa)α , [Mab, Qαi] = −1

2
(Qi γab)α , (B.9)

[T2,Qαi] = 2ǫi
j Qαj , (B.10)

{Qαi, Qβj} = −2 δij (γa
αβ Pa − i(γ5γab)αβ Mab) − 2iγ5

αβ ǫij T2, (B.11)

where Pa and Mab are the generators of SO(2, 3) and T2 is the generator of SO(2) and

ǫij = −ǫji, ǫ12 = 1 .

As a subalgebra of OSp(8|4) the superalgebra OSp(2|4) can be obtained from

eqs. (B.5)–(B.7) by singling out 8 fermionic generators Qαi from the 32 generators Qαα′

by applying to the latter the projector P2 which has two non-zero eigenvalues (see ap-

pendix C.2 for more details)

P2 =
1

8
(2 + J) , J = −iJa′b′ γ

a′b′ γ7 , (B.12)

(P2 Q)αα′ ⇐⇒ Qαi , (B.13)

where Ja′b′ are components of the Kähler form on CP 3. Thus, there is the following

correspondence between the quantities appearing in (B.5)–(B.8) and in (B.9)–(B.11)

T2 = −1

2
(Ja′b′Ma′b′ + 2M78), (P2C

′P2)α′β′ ⇔ δij , (P2γ
7P2)α′β′ ⇔ iǫij .

(B.14)

OSp(6|4) superalgebra

This algebra has 24 Grassmann-odd generators Qαa′ (a′ = 1, . . . , 6) which obey the follow-

ing (anti)commutation relations

[Pa, Qαa′ ] = i(Qa′γ5γa)α , [Mab, Qαa′ ] = −1

2
(Qa′ γab)α ,

[Ma′b′ , Qαc′ ] = δa′c′ Qαb′ − δb′c′ Qαa′ , (B.15)

{Qαa′ , Qβb′} = −2 δa′b′ (γ
a
αβ Pa − i(γ5γab)αβ Mab) − 4i γ5

αβ Ma′b′ ,
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where Pa and Mab are the generators of SO(2, 3) and Ma′b′ are the generators of SO(6)

[Ma′ b′ , Mc′ d′ ] = δa′ c′ Mb′ d′ − δb′ c′ Ma′ d′ + δb′ d′ Ma′ c′ − δa′ d′ Mb′ c′ . (B.16)

As a subalgebra of OSp(8|4) the superalgebra OSp(6|4) can be obtained from

eqs. (B.5)–(B.7) by singling out 24 fermionic generators Qαa′ from the 32 generators

Qαα′ by applying to the latter the projector P6 which has six non-zero eigenvalues (see

appendix C.2 for more details)

P6 =
1

8
(6 − J) , J = −iJa′b′ γ

a′b′ γ7 , (B.17)

(P6 Q)αα′ ⇐⇒ Qαa′ . (B.18)

Thus, there is the following correspondence between the SO(8) generators appearing

in (B.5)–(B.8) and the SO(6) generators appearing in (B.15)

1

4
(P6 γ̃ã′ b̃′ P6)α′β′ Mã′ b̃′ ⇐⇒ Ma′b′ , (P6 C ′P6)α′β′ ⇐⇒ δa′b′ . (B.19)

In particular, the generator T1 of the U(1) subgroup of the CP 3 structure group, which

appeared in sections 4 and 5, is

T1 =
1

6
Ja′b′Ma′b′ − M78 . (B.20)

OSp(8|4) closure of Qαa′ and Qαi

The anticommutator of Qαa′ and Qαi

{Qαa′ , Qβi} = −4i γ5
αβ Ma′i (B.21)

produces the generators

Ma′i = (Ma′7, Ma′8) ⇐⇒ 1

4
(P6 γ̃ã′ b̃′ P2)α′β′ Mã′ b̃′ (B.22)

that correspond to the coset SO(8)/SO(6)×SO(2) and thus complement the SO(6)×SO(2)

generators Ma′b′ and T2 (which can be associated with (redefined) M78) to complete the

full SO(8) algebra. Finally, the OSp(2|4) and OSp(6|4) superalgebras complete the full

OSp(8|4) superalgebra with the following commutation relations

[Ma′i, Qαb′ ] = δa′b′ Qαi , [Ma′i, Qαj ] = −δij Qαa′ . (B.23)

C SU(3) × U(1) embeddings into SO(6)

C.1 SU(3) × U(1) embedding into SO(6) and the CP 3 coset generators

Let Ma′b′ = −Mb′a′ (a′, b′ = 1, . . . , 6) be the 15 generators of the SO(6) algebra (B.16).

Let Ja′b′ = −Jb′a′ be a constant antisymmetric matrix (determining the components

of the Kähler form on CP 3) satisfying the relations

Ja′b′ = −Jb′a′ , Ja′c′ J
c′

b′ = −δa′b′ , ǫa′b′c′d′e′f ′ Ja′b′ Jc′d′ = 8Je′f ′ . (C.1)
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Let (P±)a′b′
c′d′

be the following 15 × 15 projection matrices

(P±)a′b′
c′d′

=
1

2
(δ[a′

c′ δb′]
d′ ± J[a′

c′ Jb′]
d′), P+ + P− = 1 . (C.2)

The matrix P+ has 9 non-zero eigenvalues and the matrix P− has 6 non-zero eigenvalues.

Then the generators

La′b′ = (P+)a′b′
c′d′

Mc′d′ (C.3)

form the algebra U(3) = SU(3) × U(1) ⊂ SO(6) with SU(3) generated by

La′b′ −
1

6
Ja′b′ J

c′d′ Mc′d′ (C.4)

and the U(1) generated by

T ′ = −1

2
Jc′d′ Mc′d′ . (C.5)

The remaining generators of SU(4) ≃ Spin(6), namely

Ka′b′ = (P−)a′b′
c′d′

Mc′d′ (C.6)

form the coset space CP 3 = SU(4)/SU(3)×U(1). They have the following generic form of

the commutation relations

[K,K] = L, [K,L] = K . (C.7)

For the construction of the AdS4 × CP 3 superspace we have, however, used a different

realization of the SU(4) algebra introduced below.

C.2 SU(3)×U(1) embedding into Spin(6) and its extension to SU(4) and Spin(8)

via Spin(7)

The necessity of understanding such an embedding is caused by the fact that the 24

fermionic generators Q of the OSp(6|4) superalgebra (which is the super-isometry of

the AdS4 × CP 3 solution of IIA supergravity preserving 24 supersymmetries) have a

natural realization as a direct product of 4-dimensional spinors of Sp(4) ≃ Spin(2, 3) and

6-dimensional vectors of SO(6), i.e. Qαa′ carry the Spin(2, 3) spinor indices α = 1, 2, 3, 4

and SO(6) vector indices a′ = 1, . . . , 6. The structure of the OSp(6|4) superalgebra is

given in eqs. (B.15).

At the same time the fermionic variables θα of IIA supergravity carry 32-component

spinor indices of Spin(1, 9) which in the AdS4 × CP 3 background naturally split into 4-

dimensional Spin(1, 3) indices and 8-dimensional spinor indices of Spin(6), i.e. θα = θαα′

(α = 1, 2, 3, 4; α′ = 1, . . . , 8). 24 of these θ’s should correspond to the unbroken supersym-

metries of the AdS4 × CP 3 background generated by the 24 Qαa′ .

These 24 θ are singled out by a projector introduced in [40] which is constructed using

the Kähler form (C.1) and seven 8 × 8 antisymmetric gamma-matrices (A.3). The 8 × 8

projector matrix has the following form

P6 =
1

8
(6 − J) , (C.8)
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where the 8 × 8 matrix

J = −iJa′b′ γ
a′b′ γ7 such that J2 = 4J + 12 (C.9)

has six eigenvalues −2 and two eigenvalues 6, i.e. its diagonalization results in

J = diag(−2,−2,−2,−2,−2,−2, 6, 6) . (C.10)

Therefore, the projector (C.8) when acting on an 8-dimensional spinor annihilates 2 and

leaves 6 of its components, while the complementary projector

P2 =
1

8
(2 + J) , P2 + P6 = 1 (C.11)

annihilates 6 and leaves 2 spinor components.

Thus the spinor

ϑαα′
= (P6 θ)αα′ ⇐⇒ ϑαa′

a′ = 1, . . . , 6 (C.12)

has 24 non-zero components and the spinor

υαα′
= (P2 θ)αα′ ⇐⇒ υαi i = 1, 2 (C.13)

has 8 non-zero components. The latter corresponds to the eight supersymmetries broken

by the AdS4 × CP 3 background.

We would like to relate the 24-component fermionic variable ϑαa′
to the Grassmann-

odd generators Qαa′ taking values in the 6-dimensional vector representation of Spin(6) ≃
SU(4). To this end, remember that the original fermionic variable θαα′

takes values in the

8-dimensional spinor representation of Spin(6) ≃ SU(4), generated by the antisymmetric

product of 6 gamma-matrices γa′

Ma′b′ = −1

2
γa′b′ , γa′b′ ≡

1

2
(γa′ γb′ − γb′ γa′) . (C.14)

The projected spinor (C.12) will therefore transform by the generators of the form

La′b′ = −1

2
P6 γa′b′ P6 . (C.15)

The question is what algebra is generated by (C.15)? Naively, one might think that it

is again Spin(6) ∼ SU(4). However, it turns out that only the generators of the U(3)

subgroup of Spin(6) survive under the action of the projector P6. Namely, using the

(anti)commutation relation of J (defined in (C.9)) with γa′

J γa′
+ γa′

J = −4i Ja′

b′ γ
b′ γ7 , [γa′b′ , J ] = 8i J[a′

c′ γb′]c′ γ
7 (C.16)

one can show that the following identities hold

La′b′ = −1

2
P6 γa′b′ P6 = −1

2
(P+)a′b′

c′d′ P6 γc′d′ P6, (P−)a′b′
c′d′ P6 γc′d′ P6 = 0 ,

(C.17)

P6 γa′b′ P2 = (P−)a′b′
c′d′ P6 γc′d′ P2 , (P+)a′b′

c′d′ P6 γc′d′ P2 = 0 ,

(C.18)
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where P± were defined in (C.2). Thus, in view of the consideration of Subsection C.1 the

operators (C.15) indeed generate the U(3) algebra, their SU(3) and U(1) subalgebras being

generated, respectively, by21

Ca′b′
I LI = 2La′b′ −

i

3
Ja′b′ P6 γ7 P6 (C.19)

and

T ′ =
1

4
Ja′b′ P6 γa′b′ P6 = − i

2
P6 γ7P6 (C.20)

(compare eqs. (C.19) and (C.20) with (C.4) and (C.5)).

Note that the CP 3 coset space generators (C.6) do not survive under the P6 projection.

We should therefore find another way to extend the U(3) generators (C.15) to Spin(6) ≃
SU(4). It turns out that the matrices P6 γa′ γ7P6 do this job, i.e. they correspond to the

six generators of the coset space CP 3 = SU(4)/U(3). Indeed, using the identities

P̃a′ = −P6γa′γ7P6 = −1

2
(δa′

b′ − iJa′
b′γ7)P6γb′γ

7P6, (C.21)

P6γa′P2 =
1

2
(δa′

b′ + iJa′
b′γ7)P6γb′P2, P2γa′P6 =

1

2
(δa′

b′ + iJa′
b′γ7)P2γb′P6 (C.22)

and

P2 γa′ P2 = 0 (C.23)

one can show that P̃a′ , defined in (C.21), and the U(3) generators La′b′ , defined in eq. (C.15),

form the following realization of the Spin(6) ≃ SU(4) algebra

[P̃a′ , P̃b′ ] = 2La′b′ , [P̃a′ , Lb′c′ ] = (δa′b′ − i Ja′b′γ
7) P̃c′ − (δa′c′ − i Ja′c′γ

7) P̃b′ . (C.24)

Note that instead of the generators P̃a′ defined in (C.21) one can equivalently use the

generators

Pa′ = Ja′
b′ P̃b′ = iP6 γa′P6 (C.25)

as the CP 3 translations, as we actually do in the main part of the paper.

The six generators −1
2γa′γ7 extend Spin(6) ≃ SU(4) to Spin(7)

Mâ′ b̂′ = (Ma′b′ ,Ma′7), Ma′7 = −M7a′ = −1

2
γa′γ7, â′ = (a′, 7) (C.26)

[Mâ′ b̂′ , Mĉ′ d̂′ ] = δâ′ ĉ′ Mb̂′ d̂′ − δb̂′ ĉ′ Mâ′ d̂′ + δb̂′ d̂′ Mâ′ ĉ′ − δâ′ d̂′ Mb̂′ ĉ′ . (C.27)

Note also that the following matrices further extend the Spin(7) algebra (C.26) to Spin(8)

Ma′8 = −M8a′ ≡ − i

2
γa′ , M78 ≡ − i

2
γ7 . (C.28)

Namely, the Spin(8) algebra is generated by

Mã′ b̃′ = (Ma′b′ , Ma′7, Ma′8, M78) , (C.29)

21Note that in the main text, for brevity, the SU(3) generators associated with (C.19) are denoted by LI

(see e.g. eqs. (4.7)–(4.11), (5.15)–(5.16) and (5.22)).
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where Ma′8 and M78, defined in (C.28), correspond to an S7-sphere coset SO(8)/SO(7).

In terms of the generators Ma′7 and Ma′8, the CP 3 generators (C.21) or (C.25) are

given by

P̃a′ = Ma′7 + Ja′
b′ Mb′8, Pa′ = −Ma′8 + Ja′

b′ Mb′7.

Thus, to reduce 8-component spinors to 6-component “vectors” taking values in the cor-

responding representation of Spin(6) ≃ SU(4) one should start with the 8-component spinor

representations of the Spin(7) algebra (C.26) and apply to them the projector P6 (C.8).

What about the P2 projection of γa′b′? It has the form similar to eq. (C.17)

1

2
P2 γa′b′ P2 =

1

2
(P+)a′b′

c′d′ P2 γc′d′ P2, (C.30)

but now one should remember that P2 has only 2 non-zero eigenvalues and, hence, the

matrix P2 γa′b′ P2 is effectively a 2 × 2 antisymmetric matrix (in spinor indices). Since

there is only one independent 2 × 2 antisymmetric matrix, the matrices (C.30) belong to

an SO(2) ≃ U(1) algebra which commutes with the SU(4) ≃ SO(6) algebra generated

by (C.15) and (C.21).

Thus, the generic form of the matrix (C.30) is Xa′b′ ǫij, where Xa′b′ and ǫij is an anti-

symmetric 6×6 and 2×2 matrix, respectively. Since the only U(3)-invariant antisymmetric

6 × 6 matrix is Ja′b′ , the matrices (C.30) actually reduce to

− 1

2
P2 γa′b′ P2 = − i

12
Ja′b′ (P2 Jγ7 P2) = − i

2
Ja′b′ (P2 γ7 P2) , (C.31)

which can also be checked directly using an explicit form of the γa′
-matrices. The Abelian

algebra generated by the 2 × 2 antisymmetric matrix − i
2 P2 γ7 P2 can be associated with

the SO(2) subalgebra of SO(8) which commutes with SO(6) generated by eq. (C.24).
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